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Lagrangian systems with constraints: a geometric approach 
to the method of Lagrange multipliers 

Jost5 F Cariiiena and Manuel F Raiiada 
Departamento de Fisica Tebrica, Facultad de Ciencias, Universidad de Zaragoza, 
5WW Zaragoza, Spain 

Received 15 July 1992, in final form 19 October 1992 

Abstract A geometric approach to the method of Lagrange multipliers is presented 
using the framework of the Iangent bundle geometry. The non-holonomic systems with 
constraint functions linear in the velocities are studied in the first place and then, and 
using this study of the non-holonomic mechanical systems as a previous result. the 
holonomic systems are considered. The Lagrangian inverse problem is also analysed 
and, final&, the theory is illustrated with several examples. 

1. Intmduetion 

One of the classical problems of theoretical mechanics is the study of constrained 
Lagrangian systems. The expression ‘constrained systems’ has two different meanings 
in Lagrangian mechanics: it either refers to systems described by a singular 
Lagrangian for which the Legendre transformation is not a diffeomorphism 11-31 
or to the case where there exist some constraints allowing only some particular 
motions. Concerning the second case (that is, when the Lagrangian L is regular), 
although it is usually assumed that the Lagrangian function must contain all the 
relevant information on the system, this is not always the case, and often there are 
some relations among the coordinates and the velocities which express the presence 
of forces of constraint on the system. The Lagrangian does not necessarily contain the 
characteristics of these additional forces and, because of this, it is usually considered 
that one must leave the Hamilton principle and look for another, more appropriate 
starting point (d‘Alemhert principle of virtual works or something similar). 

It is known that, when the Lagrangian is regular, one possible way for 
incorporating the constraint functions in the equations of motion is the use of the 
so-called Lagrange multipliers. This approach is classical and it provides a method for 
dealing with system that has been proved to be successful; however a rigorous study 
of the underlying mathematical structure has not yet been adequately developed. 

The situation can be summarized as follows [4-61: if L ( q ,  U) is the Lagrangian of 
the system without constraints, the equations of the motion for the system in presence 
of the constraint 4, are 
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1336 J F Casena and M F Raiiada 

where the functions Ai(q,u,  A) are 

when 4 is holonomic, and 

when .b is non-holonomic. It is important to emphasize that these equations are 
correct, in the sense that it is assumed that their predictions are in agreement with 
the physical measures, but they are usually presented as result of a 'recipe' and not 
as arising as a consequence of basic principles. 

From the point of view of the calculus of variations the main point is the question 
of the existence of an appropriate Lagrangian leading, via the Hamilton principle (or 
other related variational principle), to the above equations. It has often been claimed 
that such Lagrangian function must be L + A 4. Nevertheless this function poses 
two problems: the behaviour of A under the variations is not clear and, although 
admissible for holonomic systems, its result is clearly incorrect for non-holonomic 
systems (see 17-13] and references therein). Recent research has considered this 
matter within the context of differential geometric techniques in theoretical mechanics 
(see 114-181 for some recent papers). 

Nowadays it is known that the symplectic geomey in the tangent bundle of 
a manifold is the appropriate geometric setting for the description of Lagrangian 
autonomous systems [19-221. This geometric approach is considered as more 
fundamental than the traditional one, mainly for the following two reasons: (1) the 
theorems and properties are proved using an intrisic or coordinate-free formulation 
and, because of this, they are valid for topologically non-trivial configuration spaces 
and are ready for a possible generalization to the infinite-dimensional case; (2) all 
the previously known properties of the traditional approach are recovered here as 
particular cases of these new and more general results. 

Concerning the problem of the Lagrange multipliers, there are basically two 
different approaches: 
(i) The presence of Lagrange multipliers is related with the existence of a Lagrangian 

L' $ L in an extended space, but this new Lagrangian is singular. In geometric 
terms, this means that it would be necessary to leave the symplectic setting and 
then to use the tools of the presymplectic geomey [23-271. 

(ii) The original (regular) Lagrangian is the appropriate Lagrangian but the presence 
of constraints introduce new terms in the equations that can be considered as 
perturbations. This suggests to us that it would be convenient to develop a 
geometric model for the description of dynamical systems represented by Euler- 
Lagrange vector fields in tangent bundles that are submitted to perturbations of 
(probably) non-Lagrangian character. 
The purpose of this paper is to carry out the geometric study of the second 

approach. We will first introduce, in an intrinsic or coordinate-free formulation, 
some basic principles, and then prove that they (i) lead to the equations of the 
constrained Lagrangian systems and (ii) give a geometric interpretation for the 
Lagrange multipliers. One of our aims in this paper is to prove that this geometric 
method covers, at the same time, both the holonomic and the non-holonomic systems 
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(these two cases have been traditionally considered as completely different). Finally 
we notice that, in differential geometric terms it is usual to study the Hamiltonian 
formalism in the first place and only then go into the Lagrangian approach (see, e.g., 
[ E ]  and [19]). In this paper the Lagrangian symplectic theory is directly presented 
(see, e.g., [20,21] and [28,29]) and the properties of the constraints are directly 
presented inside the framework of the tangent bundle geometry. 

The paper is organized as follows: in section 2 we f i t  present the notation that 
will be used throughout the paper and then we study the non-holonomic case. The 
properties of the the vector field representing the constrained dynamics are discussed 
in section 3 and the ensuing sections consider the holonomic case, some examples 
and, finally, the Hamiltonian formulation. 

2. Geometric formalism and non-holonomic constraints 

Let Q be a differentiable manifold (of dimension n), TQ its tangent bundle, X ( T Q )  
the set of smooth vector fields on TQ and 7 : TQ -t Q the canonical tangent bundle 
projection. We will denote by {qi; i = 1.. . . ,n} a set of local coordinates in Q and 
by {qi,ui;;i = 1,. . . , n} the associated coordinates in TQ. 

The tangent bundle TQ possesses two important geometrical objects: the 
Liouville vector field and the vertical endomorphism [21,29]. The Liouville vector 
field A is the vector field A E X ( T Q )  generating dilations along the fibres. The 
vertical endomorphism S is a (1,l) tensor field S : X ( T Q )  3 X ( T Q ) .  In terms of 
the coordinates {qi, U'; i = 1,  . . . , n}, A and S have the form 

We will use the notation S' instead of S when it acts on A1(TQ). 
Suppose that a Lagrangian is given, i.e. a differentiable function L on TQ. Then 

one can construct a semibasic I-form 6, E A'( TQ)  (called the Cartan form), an 
exact 2-form wL E AZ(TQ) and an energy function E, E Cm(TQ) by 

6, = S'(dL) WL = -do, EL = A( L) - L . 
In coordinates they read 

If the Lagrangian L is regular then wL is symplectic. The dynamics is then 
represented by the flow (on TQ)  of the vector field X ,  E X ( T Q )  determined by 
the equation 

i(XL)wL = dE, . 
The solution X ,  of this equation is uniquely determined-it turns out to be a 
second-order differential equation (hereafter shortened to SODE) vector field, i.e. 
S(X, )  = A, and the curves on the Q projection of its integral curves satisfy the 
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Euler-Lagrange equations; because of t h s  X, is called the Euler-Lagrange vector 
field. In coordinates X ,  takes the form 

J F CariEena and M F Rariada 

where f i ( q ,  v )  are the Lagrangian forces (by contrast with the constraint forces) and 
Wkj  is the inverse matrix of the Hessian matrix Wij  whose entries are the second 
derivatives of L with respect to the n velocities v i ,  i = 1,. . . , n. 

Suppose that a system described by a regular Lagrangian is subjected to a force 
of constraint represented by the constraint function 4 E Cm(TQ). We distinguish 
two situations: 
(i) General case-@ is a velocitydependent function, i.e. 4 = + ( q , v ) .  Then the 

dynamics is restricted to the submanifold M+ c TQ defined by M+ = +-I(O). 
This submanifold, which represents the phase space of the constrained system, is 
of codimension 1 and does not have structure of tangent bundle. The Euler- 
Lagrange vector field X ,  is defied in TQ but the constrained dynamics is 
represented by a vector field r4 in M+ (that is, r+ E X (  M+)). The functional 
form of 4 determines the geometric properties of hf+. i f  4 is linear in the fibre 
coordinates (velocities), then it affects only the fibres and does not restrict the 
configuration space Q. If 4 is not only linear but also homogeneous then Af+ is a 
vector sub-bundle of T Q  and if 4 has a non-homogeneous term then A!+ c T Q  
is an affine sub-bundle. Thus, if 4 is linear, the image of Me by the projection 
7 covers Q, i.e. T ( M + )  = Q. Consequently, the C U N ~  { q  = q( t ) , t  E Ips) on the 
Q projection of the integral C U N ~  of r+ are defined in the whole configuration 
space Q. 

(ii) Particular case+ is a velocity-independent function, i.e. 4 = 4(q). Then the 
constraint determines a submanifold Q+ of Q defied by Q+ = +-I(O) c Q, and 
a primary constraint submanifold M(') of TQ given by hf ( I )  = T- ' (  Q+) c TQ. 
Nevertheless, in this case there is a secondary constraint D(4) = 0 where D is 
any SODE vector field and, therefore, the final submanifold M+ c M ( ' )  takes the 
form 

1 A4+ = ( ( q , v )  E T Q  I4(q) = 0 - v  a@ i -  - 0 
that is, A4+ = T(Q+). Consequently, in this case the phase space of the 
constrained system is of co-dimension 2 and does have structure of tangent bundle. 
Moreover, since Af+ is a tangent bundle, the image of M+ by the projection r 
is the base space Q+. Consequently the integral C U N ~  of I? determines C U N ~ S  
{ q  = q ( t ) , f  ER} defied only in Q+. 
Remark that in a tangent bundle the property of a function being linear in the 

fibre coordinates (velocities) is an intrinsic property, that is, it is a property that 
is preserved under point transformations. Moreover if 4 E C"(TQ) takes the 
form 4 = 4;(q)vi in a particular set of Local coordinates then, under the change 
of coordinates q" = q"(q). we have &(q)v'  = q5;(q')(aqfi/aqj)vj. Therefore 
the functions &(q )  transform as the components of an associate basic 1-form 
a E A1(TQ), a = &(q)dq'. There is thus a one-to-one linear correspondence 
between basic 1-forms and linear homogeneous functions. 
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two functions defined in TQ in the 
following form: if a E A'(Q) is a 1-form defined in Q then 6 E Cm(TQ) represents 
a function h e a r  in the fibres defmed by 6 ( q , v )  = (aq,v), and if h E Cm(Q) is 
a function defined in Q then lh E Cm(TQ) represents the pullback of h through 
the tangent projection, i.e. = r'h. It must be remarked that all these geometric 
properties have as physical counterpart the fact that, until now, the non-holonomic 
mechanical systems !mown are just linear in the velocities [17]. 

Suppose that a system described by a regular Lagrangian L on TQ is subjected 
to a linear constraint represented by the function 4 = 6 + x. In coordinates 

In what follows we will denote by 6 and 

4(q, U) = a j ( q ) d  + h ( 4 .  

When only the h-term is present, i.e. 4 = lh, the constraint is holonomic. In this 
section we will study the non-holonomic case; section 4 will consider the holonomic 
case. 

The dynamics of the constrained system will be represented by a vector field r4 
in M,+. In order to obtain this vector field we first consider the following system of 
two equations: 

i(X,)w, = dE, ( 3 4  
(3b) 

I i( Z)w, = a 

where G = r'a. 
The function E ,  is still the energy function of the Lagrangian L (that we 

can now call the free Lagrangian) and X ,  is its associate w,-Hamiltonian vector 
field. Concerning the second equation, the general case corresponds to a being non- 
closed and, consequently, to Z being a non-Hamiltonian vector field (neither locally 
Hamiltonian); only in the particular case of a being closed, which corresponds to an 
integrable constraint, 2 is Hamiltonian. In any case 2 is uniquely determined by a. 

In the following we will denote by X v (  TQ) the set of all the vertical vector fields 
(i.e. fields tangent to the fibres) 

X " ( T Q )  = {X E X ( T Q )  I S ( X )  = 01 

by X * ( T Q )  the set of the SODE vector fields 

X 2 ( T Q )  = {DE X ( T Q )  I S ( D )  = A} 

and by A:,,( TQ)  the set of the semibasic 1-forms 

/\L(TQ) = {o E /\VQ) I F ( P )  = 01. 
Notice that in geometric terms the forces are represented by semibasic 1-forms, so a 
can properly be called the constraint force. 

When L is regular, wL is nondegenerate and the map 2,  : X ( T Q )  - A'(TQ), 
X --t i j L ( X )  = i(X)w, is a bijection. The important point is that the restriction 
of G, to X " ( T Q )  determines an isomorphism between X " ( T Q )  and A i ( T Q ) ;  
because of this the field 2 is vertical. 

In coordinates Z is 
Z = -  zi(q,v)= a z ' ( q , v ) =  w"aJ. 
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Propodwn 2.1. Let X, be the Hamiltonian vector field of the function i3; then 

Proof. First notice that 6 and 6 are related by S'(d6) = 6. Thus 

but S satisfies [29] 

for any vector field Y. Hence 

and from this, the equality Z = -S(X,)  follows. 

z = -S(X,). 

S*[i(Xe)wL] = i(Z)w, 

S'[i(Y)w,] t i(S(Y))w, = 0 

6 = i(Z)w, = -i(S(Xe))wL 

Using this property the function Z(6) can be written as 

Let A be a function on TQ and rx the associated A-dependent family of vector 
Z(i3) = i(Z)i(X,)w, = w,(X,, Z )  = w, (S (Xa) ,Xcr )  

fields defined by 

that is, rx is solution of 

In coordinates takes the form 

rx = x, - AZ 

i( rx )wL = dE, - A 5 .  

A E C-(TQ) 

(4) 

where 

and its integral curves are the solutions of 
F'(q ,  v ,  A )  = f i ( q ,  v )  + X W'j aj 

or 

d i -  - v - f"(p, v )  + A " ' j  aj d i -  i zq - U  dt 

that is, the equations to be satisfied by the integral curves of the A-family rx are the 
secondader differential equations (l), (2b) of the 'classical' recipe. 

The constrained dynamics is given by the restriction of that vector field in the 
family rx that is tangent to the restricted phase space. Consequently A = A(q, v )  
represents a function to be determined. 

Therefore we assume that the dynamics is represented by a non-Lagrangian vector 
field; nevertheless as 2 is vertical, r remains SODE. The situation is summarized in 
the following map: 

Thus the vector field Z can be considered as a non-Lagrangian perturbation of the 
Euler-Lagrange vector field and the function A, that couples the two equations (3a), 
(36), represents the 'intensity' of the perturbation. In summary, the two fundamental 
characteristics are (i) the perturbation is vertical and (ii) its intensity is not given by a 
small real parameter but by a function, that is, the value of the perturbation depends 
on the point. 

Cm(TQ) x X"(TQ)  --+ X2(TQ) ( A ,  Z)  - X, - AZ. 
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Remarks. (1) Since X, and Z are defined in the whole of T Q ,  so is PA. Later, 
when we consider the restricted phase space fife, as this submanifold is not a tangent 
bundle, the properly of a vector field being SODE in M ,  must be interpreted as being 
the restriction to M ,  of a vector field tangent to M ,  that is SODE in TQ. 

(2) Given a regular Lagrangian L the I-form p E /\‘(TQ) defined by p = 
i(X)wL - dEL is semibasic if and only if the field X is SODE (this statement can 
be easily proved in coordinates; for an intrinsic (coordinate-free) proof see [29]; see 
also [22]). This property has been used in the geometric approach to the study of 
dissipative systems 130,311 where the original Lagrangian equation is modified by the 
addition of a semibasic 1-form p. Consequently, in geometric terms, the theory of 
constrained Lagrangians can be related with the theory of dissipative systems, the two 
main differences being: (i) the phase space of a dissipative system is the whole of 
TQ and not a submanifold M ,  (ii) the velocity dependence of the semibasic form 
for a constrained system is given by the function A. 

(3) The 1-form Z represents the constraint and, therefore, it does not depend on 
the particular Lagrangian considered. The dependence in L is given by the value of 
the function X (later on denoted by A). This is the reason why we have considered 
first the two equations (%, b) and not (4) directly. In (4) the 1-form p = XZ depends 
on the particular form of the function L. 

The function A, the Lagrange multiplier in the non-geometric formalism, is 
uniquely determined by imposing the condition 

rA(G t i;) = 0. 

Remark that S t i; is a constant for r, not for the Euler-Lagrange X,-evolution. 
We obtain for X the value X = A, 

that in coordinates reads, 

where we have used the notation a2 = WrS %a*. 
Suppose that L is a Lagrangian of mechanical type [19,21] L = i g ( v ,  U )  - V ( q ) ,  

in coordinates 

L ( q , v )  = +gij(q)U”j  - V ( q )  

where g is a Riemannian metric on Q. Then the term Z(6) = wL(S(X,),X,) 
turns out to be the norm of the 1-form G with respect to this metric and, because of 
this, it is a non-vanishing function. This fact is related with the above remark (3): 6 
does not depend on L but its norm Z ( 6 )  is L-dependent. 

This property can be generalized to the case of L being a more general function 
(e.g. a non-polynomial regular Lagrangian). In this case Wij can be velocity- 
dependent and then it does not define a metric on Q but a Euclidean or pseudo- 
Euclidean bilinear form on the subspace of T(‘q,e)(TQ) obtained the restriction of 
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A:b(TQ) to every point ( q , v )  E TQ. The term Z ( E )  turns out to be the norm 
(in every point) of the 1-form 6 with respect to this bilinear form and, consequently, 
the general case corresponds to Z ( S )  # 0. Nevertheless there is a very special case 
in which this function can vanish: it corresponds to (i) the bilinear form defined by 

being pseudo-Euclidean and (ii) 6 being an isotropic (null or lightlie) co-vector 
for it. Thus, only if L and a are related by these two (unusual) relations (i) and (ii), 
can the Lagrange function A not be obtained. 

J F CarGena and M F Raiiada 

Finally, the constrained dynamics is given by the restriction to M ,  of 

and its integral curves are the solutions of 

Remark that r represents a vector field defined in the whole of TQ that has the 
linear function q5 = S + lh E Cw(TQ) as a constant of the motion. That is, the 
submanifolds {$-I(r) ,  T E R} are invariant submanifolds for r and the constrained 
phase space M ,  is the particular leaf corresponding to T = 0, i.e. M ,  = @'(O). 
Consequently the flow in M ,  = @I(O) of the restriction rm E X ( M , )  of r to M ,  
defines the dynamics of the constrained 'physical' system; nevertheless it is possible 
to consider also the flow of r in other leaves but then the evolution (that could be 
called 'unphysical') will not satisfy the constraint. Moreover r can be modified in 
such a way that its restriction to At, is preserved. This can be done by considering 
the above condition of tangency in the more general form rA(E + h )  = p where p 
is a function vanishing on M,, e.g. p = ( E  + The new vector field F turns out 
to be 

I 

F 

Obviously F # F but TIM, = r l M m .  
We conclude this section generalizing all these results to the more general case 

of several constraints. 
Let L be subject to a system {q5a = Sa + 5,; a = 1,. . . , A }  of A < n lineal 

constraints; in coordinates 4 , ( q , v )  = a o , ( q ) v j  + h,(q).  We fist  recall two basic 
properties (see for example [20,32]): 
(i) The property of independence for the system {aa; a = 1,. . . , A }  is given by the 

condition 
(a) If ~ d q ,  = 0, a = 1 , .  . . ,A ,  then the intersection of the kernels of the a, is 

an involutive distribution and the system of constraints is holonomic. In this case 
there exist functions f ,  and gt, a ,  b = 1,. . . , A ,  such that a, = gt d f b .  
The dynamics is restricted to the submanifold M c TQ,  M = n M C ,  

M ,  = ,$a-*(0). Every constraint determines its associated vertical vector field 
Z,  E Xu(TQ)  and rX takes the form FA = X L  - XaZ,, A D  E Cm(TQ). 

Let {X,; a = 1,. . . , A }  be the Hamiltonian vector fields of the functions 
{Sa; a = 1,. . . , A } .  Then 2, and X ,  are related by Z,  = - S ( X , )  and the 
functions Za(&)  become 

= a1 A at A . .  . A aA # 0. 

z a ( S b )  = w L ( x b , z a )  = W L . ( S ( X a ) r X b ) .  
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Proposition 22. Let L be a Lagrangian of mechanical type. Then the matrix h.l 
defined by Mob = Z a ( S b ) ,  a, b = 1,. . . , A is non-singular. 

Proof. First notice that Za(Sb) = W ' f a , p b j  = W..z $1 a ;zbj,  zai = W'Jaa,,  and 
that the A-independent 1-forms {a,; a = 1,. . . , A }  determine in every point q E Q 
an A-dimensional subspace of T;Q. 

If the Lagrangian'L is of mechanical type then it defines a Riemannian metric g 
on Q whose components are the matrix elements Wij of the Hessian W .  Hence, by 
duality, the A vector fields {Y, E X(Q); a = 1,. . . , A }  defined by Y, = zoia/aq' ,  
determine an A-dimensional subspace V, c T9Q; moreover, using this metric, 
Z a ( S b )  can be interpreted as the function g(Y,, Yb). Let { e q a }  be an orthonormal 
basis for Vq, i.e. gq(eq,, e9b)  = ~ 5 ~ ~ .  Then M can be writen as M = BgBt where 
B is the matrix expressmg the vectors {YJ in terms of the orthonormal basis. Thus 
det M = det( BgW) = (det 

This result can be extended to regular Lagrangians defining a pseudo-Riemannian 
metric, the only additional condition being that the subspace % must admit a pseudo- 
orthonormal basis, Le. gq(eq,,eqb) = ?deb. 

In the set {FA, A" E Cm(TQ)} there is a unique vector field r that is tangent 
to M .  It is determined by solving for the X a  the A equations r x ( S b  + K b )  = 0, 
b = 1,. . . , A .  We obtain 

.. .. 

# 0. 

X L ( S b  + Tib) = X a  Za(Zib) 

whose solutions are 

Aa = Mab X L ( S b  + Ih,) 

where [ M a b ]  is the inverse matrix of [Mab].  
Finally, the constrained dynamics is given by the restriction to M of 

and its integral cwes are the solutions of 

3. Constants of the motion and other properties 

in this section we study the properties characterizing the fields r and re. 

Proposirion 3.1. The vector field Z satisfies C,O, = -a. I 
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Proof. Since wL = -do, we have 

i(Z)dB, = -6 

J F Cariiiena and M F Ratiada 

and therefore 

LzBL - d[i(Z)B,] = - 6 .  

As 2 is vertical and 0, semibasic we have i(Z)0, = 0. Hence 

L Z 0 ,  = -Z 

Using this properly and recalling that the Euler-Lagrange vector field X ,  satisfies 
the equation C X L B L  = dL, we obtain that the equation for r can also be written in 
geometric terms as 

CPBL = dL + A & .  

Proposition 3.2. Let g E Cm be a constant of the motion for L,  and Y its 
Hamiltonian vector field. If 1' E ker(6) then g is also an integral for i?. 

Proof. The vector field Y E X( TQ)  is defined by i( Y ) w ,  = dg, therefore 

T ( g )  = i(T){i(Y)w,} = -i(Y){dE, - AZ} .  

If X,(g)  = 0 then Y(E, )  = 0; thus 

r ( g )  = A(i(Y)Z) 

and consequently if Y E ker(6) then r ( g )  = 0. 
In the particular case of g = E, we obtain 

T a ( E L )  = A(i(X,)Z) = A G .  

If the constraint 4 is homogeneous (that is, 4 = G) ,  then the Energy function E, is 
a constant of the motion for the constrained system ra = r l M , .  If the constraint is 
non-homogeneous, (that is, C$ = Zit;) then E, is not an integral for the constrained 
motion and the value of A G in M ,  (that is, A G = -A lh) represents the dissipative 
term. 

We recall [19,29,32] that given a symmetric connection on a manifold Q a vector 
field X on the tangent bundle TQ is called a geodesic spray if the integral curves 
of X consist precisely of the natural lifts of the geodesics of the connection. It can 
be proved that if a SODE field X E X * ( T Q )  satisfies the homogeneity condition 
X = [A, X ]  then it is the geodesic spray of a symmetric connection. 

Suppose that L is the kinetic Lagrangian L = ; g j j d d  associated to a 
Riemannian metric g defined on Q. In this case X, is the geodesic spray 

where are the coefficients of the Levi-Civita connection determined by g. 
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Proposiron 3.3. If the Euler-Lagrange field X, is a geodesic spray and the 
constraint 4 is linear and homogeneous then r is a spray. 

Proof. If X, is a geodesic spray and the constraint function 4 takes the form 4 = 2 
then the vector field r is 

where the basic functions are 

Thus I', besides being SODE, is also a spray-r = [A, r]. 
are symmetric and they can be 

considered as the coefficients of a symmetric connection, r being the geodesic spray 
of that connection. If a is not exact then the functions M j +  are not symmetric and, 
therefore, they must be symmetrized (that is, m:s = k(M;s + Mj,))  for obtaining 
a symmetric connection. The particular case of this connection being of Levi-Civita 
class corresponds to r being a Lagrangian vector field, that is, if Mf, = M i ,  are 
not only symmetric but also coefficients of the Levi-Civita connection determined by 
a Riemannian metric G on Q, then r = X, where X, is the Euler-Lagrange field 
of the kinetic Lagrangian IL = $Gi .v iv j .  

The constrained system rm wid be said to admit a Lagrangian description with 
IL E Cm(TQ) as an admissible Lagrangian if the Euler-Lagrange field X ,  satisfies 

If the 1-form a is exact then the functions 

X , I M ,  = r-. 
Propsirion 3.4. The function U = L + Ah is an admissible Lagrangian for r,, 
a = dh, if and only if 50 is A. 

Proof. If the function IL takes the form IL = L t A h  then 

CrB, = CPBL t CrBAh = dL t Adh t r(h)BA + hCrBA 

= dIL t h&BA - dA) t r(h)B, .  

On the submanifold M ,  the linear function r ( h )  vanishes, i.e. r ( h )  = 2 = 0. 
Hence L satisfies the equation C,B, = dIL on M ,  if and only if C,B, = dA on M , .  

4. Eolonomic constraints 

The non-geometric formalism of the theoretical mechanics usually considers fist the 
holonomic systems and only then, and using this study as a previous result, studies 
the non-holonomic systems. It seems that this fact is motivated because: 
(i) The holonomic constraints are represented by functions defied not in the phase 

space but in the configuration space; because of this, they appear easier to handle. 
(ii) It is also assumed that the work to be done consists mainly of generalizing 

(or extending) the velocity-independent results to the more general case of 
dependence on the velocities. 
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The geometric formalism we are presenting here considers the problem in the 
inverse way. Having solved the non-bolonomic case, now we are going to study the 
case of holonomic constraints. The two basic properties are: 
(i) In geometric terms an holonomic constraint has a double value in the sense that 

it reduces the phase space not in one but in two dimensions. 
(U) The dynamical vector field is only defined in the tangent bundle T( Qh) .  

Suppose that the Lagrangian system (TQ,w,,X,) is subject to the constraint x. 
Then the dynamics must be represented by a vector field in X(T(Qh) ) .  Notice that 
a point in TQ belongs to T(Qh)  only if its coordinates ( q i , v i )  satisfiy the two 
equations h(q’) = 0 and &q‘, v’) = 0. Because of this the holonomic case can be 
considered as a two-step process: first we consider the linear and homogeneous non- 
holonomic constraint corresponding to o = dh, and then we reduce the configuration 
space from Q to Qh. 

In geometric terms the basic equations are 

Consequently, if the constraint is holonomic, i.e. 4 = x, then the vector field Z is 
Hamiltonian and the constraint function is the w,-Hamiltonian of the perturbation. 

The A-family {r,, X E C”(TQ)] now satisfies the equation 
- 

i(rx)wL = dE, - Xdh 

and the dynamics is given by the vector field rh E X ( T ( Q h ) )  obtained as the 
restriction to T(Qh) of the vector field r in r,, that is, rh = r[T(Qh),  r E r,. 

The coordinate expression for rx is 

and its integral curves are solutions of 

which agree with the equations (l), (2a) of the ‘traditional’ approach. 

uniquely determined by imposing the condition 
The function A, the Lagrange multiplier in the non-geometric formalism, is 

rX(& = 0. 

X L ( Z )  = X Z(Z) .  
Hence 

In coordinates, 
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therefore 

Hence, the dynamical vector field r h  E X(T(Qh))  takes the form 

and the equations of its integral curves are 

Finally, the classical result concerning the Lagrangian character of the holonomic 
systems is stated in this geometric formalism as follows. 

Proposition 4.1. The function IL = L + A h  is an admissible Lagrangian for rh .  

Proof. Before proceeding to the proof notice that here A is a function on TQ and 
does not represent, as in other approaches, a new degree of freedom. 

This property follows from proposition 3.4 where we proved that if L = L + Ah 
then 

C,B, = dL + h(C,B,, - dA) + r(h)B,,. 

The tangent bundle T ( Q h )  is characterized by the vanishing of both h and 
r ( h )  = %; therefore L satisfies L,B, = dL on the restricted phase space. 

5. Examples 

In the following examples coordinate indices will be written as subscripts. 

Example 1. As an example of an a-type constraint we will consider the motion of 
a rolling disk constrained to remain vertical [6,17]. The configuration space Q is 
Q = R  x S' x S' and the (free) Lagrangian L E G"(TQ) for this system is 

L =  i(mv:+mv:+ I , U : + I ~ V ~ )  

where m, Io and I I  are constants. 

expressed by the two equations 
The constraints for this system are of non-holonomic character and can be 

61 = zti - (Rcosq3)vq = 0 62 = U*- (RSinq3)U4 = 0.  

In this case the 2-form wL and the I-forms cyI, cy2, are 

wL = m dq, A du, + m dq2 A dvz + I ,  dq3 Adu3 + I ,  dq, A dv, 

a, = dq, - (Rcosq3)dq4 a2 = dqz- (Rsinq3)dq4 
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and the vector fields X ,  and Z,, Z,, turn out to be 

J F Cariirena and M F Rafiada 

i a  R .  a 2, = ---+-smq3- 
a l a  R a x, = w k -  2, = ----t-cosq 

a q k  maul I ,  3G m aw, Io aw, 
and thus, the A-dependent vector field rx takes the form 

rx = x, - A,Z, - A,Z, 

and its integral curves satislj 

The functions A i  = A i ( q ,  U), i = 1,2, are to be obtained by imposing the conditions 

FA(&) = X L ( & , )  - A,Z,(G,) - A*Z*(G,) = 0 
rA(&,) = xL(c2) - X,Z,(G~) - A,Z~(G,) = o 

and thus we obtain 

A, = -(mRsinq3)v3v4 A, = (mRmsq3)w3w4. 

Finally the dynamics is given by 

The projection to Q of the integral curves of r are 

q l ( t )  = R2 sin(w30t+ 430) + alt t bl 
w40 

qz(t) = -R- cos(u&+ 930) t t 62 
'30 

q?(t) = V 3 d  + q30 q4@) = w40t t 940 

where a i , b i ,  i = 1,2, are constants and (qo,uo) = {qio, wio; i = 1 , .  . . ,4} are 
the initial data. The two functions Gi ,  i = 1,2, are constants of the motion with 
invariant values Gi = ai ,  i = 1,2. Consequently if the initial data satisfy the two 
constraints, i.e. (qo,wo) E M ,  = &;'(O) n G?'(O), then a l  = a, = 0 and the 
corresponding functions qi = q i ( t ) ,  i = 1, ..., 4, represent the evolution of the 
constrained 'physical' system. 

Example 2. As an example of an h-type constraint we will consider the rigid rotor, 
that is to say, a free point-particle constrained to move on the sphere of radius r. 
The configuration space Q is Q = R3, the free Lagrangian L E C"(TQ) is 

3 
L = i m  u: 

k = l  
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and the constraint for this system can be expressed by the equation h(q) = 0, where 
3 

h(q) = q: - r2 .  
k = l  

In this case the 'constrained' phase space is the tangent bundle 

and the 2-form wL and the 1-form a are 

The vector fields X L  and 2 turn out to be 
wL = m dqk A dVk a = dh = 2 qkdqk 

and hence, the A-family of vector fields rx takes the form 

The particular value A of A ( q ,  U) is obtained by imposing the condition 
h 

l?h(dh) = rX(2qkuk) = 0 
and thus we obtain 

FinaJly the constrained dynamics is given by 

Remark that as rh E X ( T ( Q h ) )  we have made use of the equation h(q)  = 0. 
Moreover the second-order equations 

di = - ( F ) q i  c 4 i = 1,2,3 

are defined not on the whole Q = R3 but on Q h .  

Exuinpk 3. As an example of an a = dh constraint we will consider the Lagrangian 
L of the above previous example but now with the constraint q k w k  = 0. The 
constraint dynamical system is I',, = r l M ,  with 

The Euler-Lagrange vector field X, defined as the solution of the equation 
i(X,,)w,, = dE,,, E, = A, is 

X*=wi-+f i -  a A a  
8% 8 U i  

Thus X,, # r but X,IM, = Pa. Hence A is a Lagrangian for P a .  
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6. Hamiltonian formalism 

Let L E Cm(TQ)  be a regular Lagrangian determining in T Q  the Hamiltonian 
dynamical system {TQ,w,,E,,X,} and let us denote by D, E D f i ( T Q , T * Q )  
its associate Legcndre transformation; then it is known that D, determines in T' Q 
a new Hamiltonian system { T ' Q , w o , H , X H }  by wo = D,*(W,), H = D,*(E,) ,  
X ,  = D L I ( X L ) ,  where D,, = ( DL*)-I and U,, = -deo is the canonical symplectic 
form. 

Since D, is fibre-presetving it satisfies DL,(X"(TQ)) = X' (T 'Q) ,  and 
therefore the field Z, = D L * ( Z )  is vertical in T*Q. Moreover D, is also base- 
invariant, therefore besides preserving the semibasic forms (i.e. D,*(A;,,(T*Q)) = 
Af,,(TQ)) it reduces to the identity on basic forms. Hence D,*(Z) = Z (with a 
slight abuse of notation we also use 6 for #a, ?r : T ' Q  --t 9 ) .  Thus the image 
of {TQ,w, ,G,Z} by D ,  is the (non-Hamiltonian) system { T ' Q , u ~ , Z , Z + }  where 
the field Z, satisfies 

J F CariJiena and M F Raiiada 

i( Z,)w, = & . 
In local coordinates it takes the form 

a 
BP' 

z, = q ( q ) - .  

The dynamics is now restricted the submanifold N ,  c T*Q 
N ,  = D,,( M , )  and is given by the restriction to N ,  of 

r. = D,*(r) = x, - A .  z, 
where the function A * ( q , p )  = D,, (A(q ,v ) )  takes the form 

fir 

(we have supposed that L is of mechanical type, i.e. vi = W ' j p j ,  but if L contains 
magnetic terms linear in the velocities then this relation must be modified by including 
a non-homogeneous term). Finally, the integral curves of I?; in N ,  are the solutions 
of 

Acknowledgment 

Partial financial support by CICYT (Comisi15n Interministerial Cientifica y T6cnica) 
is acknowledged. 



Lagrangian system with comtraints 

References 

1351 

Hanson A, Rsgge T and Teitelboim C 1976 Consmined Hamiltonian *stem (Roma: Academia 

Sundermeyer K. 1982 Consfrained L3pmic.s (Lecrrrre N o m  in P h p b  169) (Berlin: Springer) 
Cariaena I F 1990 Theory of singular Lagrangians Forsch. Phys. 38 641 
Saletan E J and Cromer A H 1970 Am. J. Phys. 38 892 
Saletan E I and Qomer A H 1971 Theoreticaf Mechanics (New York Wiley) 
Galvao C A and Negri L 1 1983 J. Phys A: MaUr Gen. 16 4183 
Huston R L and Passerello C E 1976 Inf. J. Non-Linear Mech. 11 331 
Rumiantsev V V 1978 Appl. Math. Mech PMM 42 387 
Rumiantsev V V 1979 Appl. Mafh. Mech PMM 43 583 
Rumiantsev V V 1984 Appl. Mafh. Mech PMM 48 380 
Rumiantsev V V 1983 Proc. IUUM amp.  (Modem Devefopments in halyrical Mechanics) ed 

S Benenti, M Francaviglia and A Licherowicz 
Brendelev V N 1982 Appf. Math. Mech. PMM 45 351 
Naziev E Kh 1972 App/. Math. Me& P,WM 36 1108 
Weber R W 1983 P m .  ILpc4M Symp. (Modem Developments in Anaiyfical Mechanics) ed S Benenti, 

Weber R W 1985 Arch Ration. Mech. Anal. 91 309 
Cardin F and Zanwtto G 1989 J. Math. Phys 30 1473 
Giachetta G 1992 J. Math. Php. 33 1652 
Koiller I 1992 Arch Ration Mech. Am/. 118 113 
Abraham R and Marsden I 1978 Foundafions of Mechanics (Reading, M A :  Benjamin) 
M m o  G, Saletan E J, Simoni A and Wale B 1985 Dynamical System: A Differentia/ Geomeltic 

Morandi G, Ferrario C, Lo Vecchio G, Marmo G and Rubano C 1990 The inverse problem in the 

de k 6 n  M and Rodrigues P R 1989 Melhods of Differential Geomey in Analical Mecbnnics 

Lichnerowicz A 1975 C. R. Acad. Sci, Paris A 280 523 
Gotay M I, Nester J M and Hinds G 1978 J. Math. Phys. 19 2388 
Gotay M J and Nester J M 1979 Ann. Inst. H. Poincar6 A 30 129 
Gotay M J and Nester J M 1980 Ann Im. H. Poinear6 A 32 1 
Canhijn F, Cariiena J F, Crampin M and lbort L A 1986 J. Ceom. Phys. 3 353 
Crampin M 1981 J.  Phys. A: Math. Gen. 14 2567 
Crampin M 1983 J.  Phys. A:  Math. Gen. 16 3755 
Canhijn F 1982 J. Math Phys. 23 1589 
Cantrijn F 1984 J. Math Phys. 25 271 
Crampin M and Pirani F A 1988Appficab/e DiferenfLd Geomeuy (Cambridge: Cambridge University 

dei Lincei) 

M Francaviglia and A Lichnerowicz 

Approach (Chichester, UK: Wiley) 

calculus of variations and the geomehy of the tangent bundle Phys. Rep. 188 147 

(North-Holland Amsterdam) 

Ras) 


